PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力开发者训练出更好的模型,并应用落地。官方开源项目地址:https://github.com/PaddlePaddle/PaddleOCR
一定会有小伙伴们看完不知道如何部署与应用,怎么才能融入到自己的产品或项目中去。PaddleOCR是开源、免费、可离线部署的OCR。
本文将介绍如何在windows平台上,自动化部署webAPI,并给出示例如何使用。.
第一步,要安装Python环境。下载地址:https://www.python.org/downloads/
建议选择安装3.6~3.9版本,然后为了pip下载速度,把下面的文本内容,保存为pip.ini文件,存放到你的python安装目录下,例如:C:\Users\username\AppData\Local\Programs\Python\Python39
[global]index-url = https://pypi.tuna.tsinghua.edu.cn/simple[install]trusted-host=mirrors.aliyun.com
第二步,把下面的批处理文件文本内容,保存为PaddleOCRWebAPI.bat文件,存放到你的电脑上任意目录下,然后双击运行,不出意外,你的PaddleOCR的WebAPI就部署成功啦。
@echo offCOLOR 2Ftitle 公众号:明月心技术学堂echo 本脚本演示如何在window境下一键部署PaddleOCR的WEBAPI功能。echo 待脚本执行完后,将自动开一个OCR服务。url=127.0.0.1:5000/PaddleOCR/DetectTextecho 检测PYTHON安装python -Vpython -m pip install --upgrade pippip3 install opencv-python==4.5.5.64echo 开始安装PaddleOCRpip3 install paddleocrecho 安装PaddleOCR的依赖预测库pip3 install paddlepaddleecho 安装Flaskpip3 install Flaskecho 安装DateTimepip3 install DateTimeset port=5000set filename=PaddleOCRAPI.py@echo offdel %filename%echo import io >> %filename%echo from pickle import DICT >> %filename%echo import paddleocr >> %filename%echo import json >> %filename%echo import base64 >> %filename%echo import DateTime >> %filename%echo from flask import Flask, request,jsonify >> %filename%echo import numpy as np >> %filename%echo from PIL import Image >> %filename%echo app=Flask(__name__) >> %filename%echo app.config['JSON_AS_ASCII']=False >> %filename%echo @app.route("/PaddleOCR/DetectText",methods=["POST"]) >> %filename%echo def PaddleOCR(): >> %filename%echo if(request.data==""): >> %filename%echo return APIResult.Error("request data is null") >> %filename%echo data=json.loads(request.data) >> %filename%echo imgbyte=base64.b64decode(data) >> %filename%echo image=io.BytesIO(imgbyte) >> %filename%echo temp= Image.open(image) >> %filename%echo img=np.array(temp)[:,:,:3] >> %filename%echo info= ppocr.ocr(img) >> %filename%echo result={"TextBlocks":[]} >> %filename%echo for textblocks in info: >> %filename%echo textBlock={"Points":[],"Text":""} >> %filename%echo for tk in textblocks[0]: >> %filename%echo point={"x":str(tk[0]),"y":str(tk[1])} >> %filename%echo textBlock["Points"].append(point) >> %filename%echo textBlock["Text"]=textblocks[1][0] >> %filename%echo result["TextBlocks"].append(textBlock) >> %filename%echo print(result) >> %filename%echo return jsonify(result) >> %filename%echoecho def main(): >> %filename%echo global ppocr; >> %filename%echo ppocr=paddleocr.PaddleOCR(use_gpu=False); >> %filename%echo app.run(debug=True,host="0.0.0.0",port=%port%) >> %filename%echo if __name__=="__main__": >> %filename%echo main(); >> %filename%call %filename%
在批处理执行如果遇到提示 core_avx,找不到指定的模块,这是应为vc++2017运行环境没有安装,你可以加入后面的QQ群,获取补丁文件,把【vc2017库文件】文件内的所有文件复制到Python安装目录下的【\Lib\site-packages\paddle\libs】的文件夹既可。
上述OCR的服务启动以后,小伙伴是不是非常想试试看看OCR识别的结果呢?
接下来介绍如何使用API,把下的文本内容另存为一个ClientPython.py文件,并把你想识别文字的图片,放在image文件夹下,双击运行保存的ClientPython.py文件,就可以看到识别的结果啦!
import requestsimport osimport base64def main():imagepath=os.path.abspath('.')+"\\image\\"imagefiles=os.listdir(imagepath)for image in imagefiles:imagefile=imagepath+imagewith open(imagefile,"rb") as fs:imagebase64=str(base64.b64encode(fs.read()),"utf-8")headers = { 'Content-Type': 'application/json'}response = requests.post('http://127.0.0.1:5000/PaddleOCR/DetectText', headers=headers, json=imagebase64)print(response.content)if __name__=="__main__":main();
小伙伴们学会了吗?快来动手试试吧!
这里,再介绍一下C#如何调用WebAPI,看看C#如何使用,创建控制台程序,分别复制一下代码,同样在运行目录下准备好你的image文件夹。
public class WebAPIClient{static string url = "http://localhost:5000/PaddleOCR/DetectText";public static string DetectText(string base64){RestClient client = new RestClient(url);RestRequest req = new RestRequest() { Method = Method.Post };req.AddBody(base64);req.AddHeader("Content-Type", "application/json");var resp = client.ExecuteAsync(req);if (resp.Result.StatusCode != HttpStatusCode.OK){throw new Exception("HttpError:" + resp.Result.StatusDescription);}return resp.Result.Content;}}
string[] extensions = new string[] { ".jpg", ".bmp", ".jpeg", ".png", ".tif", ".tiff" };string imageroot = Environment.CurrentDirectory + "//image";if (!Directory.Exists(imageroot)) Directory.CreateDirectory(imageroot);DirectoryInfo directoryInfo = new DirectoryInfo(imageroot);var files = directoryInfo.GetFiles("*.*");DateTime dt1;DateTime dt2;foreach (var file in files){if (!extensions.Contains(file.Extension.ToLower())) continue;byte[] imagebyte = File.ReadAllBytes(file.FullName);string base64 = Convert.ToBase64String(imagebyte);dt1 = DateTime.Now;var s = WebAPIClient.DetectText(base64);dt2 = DateTime.Now;Console.WriteLine((dt2-dt1).TotalMilliseconds);Console.WriteLine(s);}Console.ReadKey();